CHAPTER 5 ## WATER TREATMENT CHEMICALS - 5-1. Chemical properties. Chemicals are used for a variety of purposes in conventional water treatment practice, including coagulation and flocculation, disinfection, taste and odor control, and pH adjustment. The most common chemicals and some of their characteristics are listed in table 5-1. - 5-2. Chemical standards. Chemicals used at Army water treatment plants will meet the applicable standards of the American Water Works Association (AWWA). If chemicals meeting the AWWA standards are not available, then substitute materials may be used after they are evaluated and determined by the Surgeon General of the Army to be safe for drinking water. - Chemical handling and storage. In the design of water treatment facilities, the selection of methods of chemical handling and storage must be based primarily on ease of operation, operating flexibility, and safety considerations. If chemicals are to be received in shipping containers such as bags, boxes, drums, or canisters, equipment required for chemical handling may include carts, dollies, fork lifts, cranes, If chemicals are shipped in bulk quantities, the mode of unloading depends on the physical characteristics of the chemical. Bulk liquids are usually unloaded by pumping from the tank truck or railroad car to the storage tanks at the treatment plant. Bulk powders can be unloaded by pneumatic unloading and conveyance devices, or if the powder is to be mixed or dissolved in water, it can be unloaded directly into a water eductor in which the powdered chemical and the water are mixed as the water is flowing to the storage tank. crystals or granules are usually unloaded by mechanical devices, such as bucket elevators and conveyor belts. All three forms of bulk chemicals can be unloaded by gravity if the chemical storage tanks or bins are located below ground near railroad tracks or roadway. Chemicals shipped in bags, drums, barrels, or other shipping containers can usually be stored by placing these containers in a specified storage area. The supply of chemicals in storage at a water treatment plant should always be at least equal to the projected 30-day requirements. Under some circumstances, it may be desirable to maintain larger supplies of essential chemicals, such as disinfectants or coagulants, and smaller supplies of nonessential chemicals. Extreme caution must be used when handling and storing most water treatment chemicals. Mishandling may cause death, injury, or at the very least, may render chemicals ineffective. Hazardous chemicals, such as chlorine gas, must be stored in separate rooms to avoid reaction of chemical vapors. When doubt exists as to the proper handling of certain chemicals, advice from the manufacturer or other technically competent authority should be sought. ## 5-4. Chemical application. - a. Dry chemicals. Dry chemicals are usually converted to a solution or slurry prior to application to the water. Measurement of the chemical application rate is accomplished by the dry-feed machine. The measured quantity of chemical is then dissolved or slurried in a small amount of water for transport to the feed point, where the solution or slurry must be rapidly and thoroughly mixed with water being treated. - b. Liquid chemicals. Chemical solutions or slurries are applied directly, or after dilution, to the water being treated by volumetric liquid feeders such as metering pumps or rotating wheel feeders. Rapid, thorough mixing of the chemical solution or slurry with the water is essential. - c. Chlorine application. Hypochlorite solution will be fed by an injector, diaphragm pump, or centrifugal pump system. The point of discharge of the chorine solution must be at least 2 feet below the water surface. - d. Corrosion. Special attention should be directed to the materials used for the critical parts of chemical feeders. Many chemicals form corrosive environments for common metals. | | | | Table 5-1. | Principal Chemicals Used in Water | s Used in Water ? | Treatment | | | |--|---|-------------------|--|--|---|---|--|---| | Chemical Name
and Formula | Common or
Trade Name | Purpose | Shipping
Containers | Suitable Han-
dling Materials | Bulk Density
1b/cu ft | Solubility
1b/gal | Commercial
Strength | Characteristics | | Aluminum sul-
fate solution | Liquid alum | Coagulation | Tank trucks
or tank cars | Lead or rubber-
lined steel, 316
stainless steel,
plastic | (11.047 lbs/
gal) | 1 | 5.36 lbs dry
alum per
gallon | pH of 1% solution is 3.4 | | Aluminum sul-
fate (dry),
Al2(SO4)3
.14 H20 | Alum, filter
alum, sulfate
of alumina | Coagulation | 100-200 1b.
bags, 300-
400 1b.
barrels, bulk
(carloads). | Dry-Iron, steel. Solution-lead- lined rubber, silicon, asphalt, 316 stainless | Powder 38-45
Granule 60-63
Lump 62-67 | 4.2 at 60°F | 15-22% A1 ₂ 0 ₃ | pH of 1% solution is 3.4 | | Sodium alumi-
nate Na2OAl2O3 | Soda alum | Coagulation | 100-150 lb.
bags; 250-
440 lb.
drums; solu-
tion. | Iron, plastics,
rubber, steel | | Highly
soluble | 70-80%
Na ₂ Al304,
32% Na ₂ Al304
minimum | Hopper agitation required
. for dry feed | | Ferrous sulfate Copperas,
FeSO4 · 7H ₂ O green vit | Copperas,
green vitriol | Coagulation | Bags,
barrels, bulk | Asphalt, concrete,
lead, tin, wood | 63–66 | 0.5 at 32°F
1.0 at 68°F
1.4 at 86°F | 55% FeSO4
20% Fe | Hygroscopic; cakes in storage; optimum pH is 8.5-11.0 | | Ferric chloride Ferrichlor,
FeCl3 (37-47% chloride of
solution) iron | Ferrichlor,
chloride of
iron | Coagulation | 5-13 gal.
carboys,
trucks,
tankcars | Glass, stoneware,
synthetic resins | (11,2-12,4 lbs
/gal) | | 37-47% FeCl3
13-16% Fe | Very corrosive | | Ferric sulfate
Fe2(SO4)3 ·
9H2O | Ferrifloc,
Ferrisul | Coagulation | 50-175 lb.
bags, 200-425
lb. drums | Ceramics, lead,
plastic, rubber,
18-8 stainless
steel | 56-72 | Soluble in
2-4 parts
water | 66% Fe ₂ SO ₄
20% Fe | Mildly hygroscopic,
Coagulant at pH 3.5-11.0 | | Sodium silicate Water glass
Na ₂ OSiO ₂ | Water glass | pH control | Drums, bulk
(tank trucks,
tank cars) | Cast Iron, rubber,
steel | (11.6 lbs/gal) | Highly
soluble | 28.7% SiO ₂ | Variable ratio of Na20 to
SiO2. pH of 1% solution
is 12.3 | | Chlorine | Chlorine gas,
liquid
chlorine | gas, Disinfection | 100-150 lb. cylinders, 1 ton con- tainers, 16- 30-55-85 and 90 ton tank cars, tank trucks (about 15-16 tons) | Dry - black iron,
copper, steel.
Wet gas - glass,
hard rubber, silver,
earthenware | 91.7
(liquid at
32°F) | 0.063 at 50°F
0.047 at 86°F | 99.8 % C12 | Toxic gas. Solutions in water highly acidic and corrosive. | | (Continued) | | |-------------|--| | Treatment | | | Water | | | Į, | | | Used | | | Chemicals | | | Principal | | | -1: | | | 2 | | | able | | | Characteristics | .le." | Danger of explosion on
contact with organic
matter | ı | 1 | pH of saturated solution
is 12.4 | pH of saturated solution
at 68°F is approx. 4.0. | Corrosive when moist. | pH of 1% solution is 6.7-7.2 | |----------------------------------|--|--|--|---|---|--|---|---| | Commercial
Strength | 70% "available"
chlorine | 286 | ŀ | 1 | 75-99% CaO | 99.9% 00 ₂
F | 96% NaCl | .67% P ₂ 05 | | Solubility 1b/gal | Approx. one | 0.5 at 70°F | Insoluble
(used as a
 1b/gal
slurry) | Insoluble | Slakes to
form hydrated
lime | 0.03 at 32°F
0.014 at 68°F
0.008 at 104°F | 2.9 at 32°F
3.0 at 68°F
3.0 at 86°F | Highly
soluble | | Bulk Density 1b/cu ft | 48 | 90-100 | 8-28 | 22-36 | 55-60 | 63.7 at 0°F
(liquid) | Rock 50-60
Fine 58-70 | Crystal 78
Flake 81
Powder 64 | | Suitable Han-
dling Materials | Class, rubber,
stoneware, wood | Iron, steel,
plastics | Dry-Iron, steel,
Wet-rubber, sili-
con stainless steel | Dry-Iron steel, Wet-rubber, sili- con iron, stainless steel | Asphalt, cement,
iron, rubber,
steel | Dry-iron, steel
Wet-rubber,
ceramics | Bronze, cement,
rubber | lb. bags, Hard rubber,
-320 drums plæstics, stein-
less steel | | Shipping | 5 lb. cans,
100-300-800
1b. drums | Bulk,
barrels,
drums | Bags, bulk | Bags, bulk | 80 1b. bags;
100 1b.
barrels, bulk
(carloads or
trucks) | 20-50 lb.
cylinders,
10-20 or
18-20 ton
tank trucks,
30-43 ton
tank cars | Bags,
barrels, bulk
(carloads) | 100 lb. bags, 100-320 drums | | Purpose | Disinfection | Taste-odor
control | Taste-odor
control | Taste-odor
control | pH control | ph control | Sodium
zeolite re-
generation | Corrosion
inhibitor | | Common or
Trade Name | "HTH", "Per-
chloron",
"Pittchlor" | Purple salt | Powdered
activated
carbon | Granular
activated
carbon | Quicklime,
burnt lime,
chemical
lime, un- | Carbon
dioxide | Common salt, salt, | Polyphos-
phate, glassy
phosphate,
vitreous | | Chemical Name
and Formula | Calcium hypo-
chlorite
Approx.
Ca(OCl) ₂ · 4H ₂ O | Potabsium
permanganate
KMnO4 | Activated
carbon
(powdered) | Activated carbon (grafiular) | Calcium oxide | Carbon dioxide | Sodium chloride Common salt,
NaCl salt | Sodium hexa-
metaphosphate | U. S. Army Corps of Engineers